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SUMMARY: Tetraphenylporphyrin-sensitized photooxygenation of 2-methyl-5- 
trimethylsilylfuran ($1 affords quantitatively trimethylsilyl 2-0x0-4- 
pentenoate (21, presumably via intramolecular Baeyer-Villiger rearrange- 
ment of the intermediary dioxirane (22). 

Recently we reported' that the furan endoperoxides (:) oxidize olefins 

to epoxides, sulfides to sulfoxides and adamantanone to its lactone. The 

oxygen transfering ability of this novel oxidant was rationalized in terms 

of the carbonyl oxide and/or dioxirane intermediates (2) and (z), as 

illustrated in Eq.1. Attempts to differentiate between these highly reac- 

tive species by intermolecular trapping experiments with dipolarophiles 

such as aldehydes (PhCHO and CH3CHO)2 and ketones (CF3COCF3 and adamantanone) 
3 

unfortunately failed: intermolecular Baeyer-Villiger oxidation of the car- 

bony1 dipolarophiles occurred. The latter results suggest that an intermediate 

of (1) is responsible for these oxygen transfer reactions; they do not,'lowever 

enable us to differentiate between the proposed carbonyl oxide (2) and 

dioxirane (2) possibilities.Moreover, very recently it was argued4 that 

the stable endoperoxide of 1,3-di-tert-butylisofuran epoxidizes olefins 

and hydroxylates aromatic rings via the diradical rather than the dipolar 

form of the resulting carbonyl oxide intermediate. 
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Since intermolecular trapping experiments failed to define the nature 

of the oxidizing species derived from the furan endoperoxides (J), we turned 

to intramolecular probes. For example, it was previously shown ' that the 

singlet oxygenation of a-silyl diazoalkanes affords silyl esters (Eq.2); 

a preference for the dioxirane intermediate was expressed. Similarly, the 
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-W Me3Si-0-e-Ph 
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formation of silyl formate in the ozonolysis of silylketenes was rationalized 

in terms of a related dioxirane structure. 6 These interesting intramolecular 

Baeyer-Villiger rearrangements served as incentive to prepare the silyl- 

furan endoperoxide (l$ and examine its singlet oxygenation. The results 

of this investigation are herein reported. 

Tetraphenylporphyrin-sensitized photooxygenation of a 0.08 g solution 

of 2-methyl-5-trimethylsilylfuran7($) in Ccl4 at O°C as describedll afforded 

a quantitative yield of silyl ester (5), cf. Scheme I, characterized on the 

basis of the following spectral data: %I H NMR (CC14)&(ppm) 0.35 (9H, s, Me3Si) 

2.30 (3H, s, CH3), 5.80-6.00 (IH, d, J = I2 Hz, =C-H) and 6.30-6.50 (IH, d, 

J = I2 Hz, =C-H); IR (CC14)v(cm-') 3100 ( =C-H), 2980-2900 (aliphatic CH), 

1720 (C02SiMe3), 1700 (CH3CO) and 1625 (C=C). Oxygen, sensitizer and light 

were all necessary to effect this oxidation. On methanolysis the silyl 

ester (2) was quantitatively converted to the known y-hydroxy-y-lactone (t), 

whose spectral data were identical to the reported ones. 8 
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Attempts to trap the silylfuran endoperoxide (&) by low temperature 

(-60°C) reduction with diimide' led to a complex and undefined product 

mixture. 
10 

Trapping (1%) with methanol , by carrying out the photooxygenation 

of the furan (4J directly in CH30H at low temperature (-70°C) afforded ex- 

clusively the y-lactone ($Y). Clearly, the intramolecular silatropic shift 

in the rearrangement Cl,%) + (2) takes place faster than external inter- 

vention by methanol. In analogy to previous work 5,6 , it is tempting to con- 

clude that the dioxirane intermediate (&), derived from cyclization of 

the carbonyl oxide intermediate (%a,) is the immediate precursor to the 

silyl ester :z) Nevertheless, recently 
11 it has been claimed that furan 

endoperoxides (IQ) undergo intramolecular Baeyer-Villager rearrangement 

directly into methoxymethyl cis-4-oxo-2-butenoate (;1), the so-called "ano- 

malous ozonide" product 12 , without intervention of carbonyl oxide or dioxi- 

rane intermediates (Eq.3). Although the evidence in support of this inter- 

CH20Me OCH20Me (3) 

(ltj (7J 

pretation is modest, in fact, recent results on the ozonization of a,@- 

enones13 speak against such a direct mechanism, analogously the formation 

of silyl ester (2) via the sequence (lla) -t (kc') + (2) can be proposed. 

Oxygen labeling experiments (Scheme I), by tagging the furan oxygen with 

O-18, should unequivocally permit differentiation between the direct path 
# via the activated complex ($e,) versus stepwise path via the intermediates 

($0) and/or (&). Such experiments are currently in progress. However, the 

question whether carbonyl oxides (2) or dioxiranes (2) are the immediate 

precursors in such intramolecular Baeyer-Villiger rearrangements must be 

answered using other mechanistic probes, e.g. intramolecular trapping with 

built-in carbonyl dipolarophiles. 
14 

Such an experiment is presented in 

the accompanying paper. 
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